Easy to Learn Java: Programming Articles, Examples and Tips

Start with Java in a few days with Java Lessons or Lectures

Home

Code Examples

Java Tools

More Java Tools!

Java Forum

All Java Tips

Books

Submit News
Search the site here...
Search...
 

6: Reusing Classes

Custom Search
6: Reusing Classes

[ Return to Thinking in Java 2, 3rd edition ]

Page: 1/12 



Next Page (2/12) Next Page
MindView Inc.

Thinking in Java, 3rd ed. Revision 4.0


[ Viewing Hints ] [ Book Home Page ] [ Free Newsletter ]
[ Seminars ] [ Seminars on CD ROM ] [ Consulting ]


6: Reusing Classes

One of the most compelling features about Java is code reuse. But to be revolutionary, you’ve got to be able to do a lot more than copy code and change it.

That’s the approach used in procedural languages like C, and it hasn’t worked very well. Like everything in Java, the solution revolves around the class. You reuse code by creating new classes, but instead of creating them from scratch, you use existing classes that someone has already built and debugged. Feedback

The trick is to use the classes without soiling the existing code. In this chapter you’ll see two ways to accomplish this. The first is quite straightforward: you simply create objects of your existing class inside the new class. This is called composition, because the new class is composed of objects of existing classes. You’re simply reusing the functionality of the code, not its form. Feedback

The second approach is more subtle. It creates a new class as a type of an existing class. You literally take the form of the existing class and add code to it without modifying the existing class. This magical act is called inheritance, and the compiler does most of the work. Inheritance is one of the cornerstones of object-oriented programming, and has additional implications that will be explored in Chapter 7. Feedback

It turns out that much of the syntax and behavior are similar for both composition and inheritance (which makes sense because they are both ways of making new types from existing types). In this chapter, you’ll learn about these code reuse mechanisms. Feedback

Composition syntax

Until now, composition has been used quite frequently. You simply place object references inside new classes. For example, suppose you’d like an object that holds several String objects, a couple of primitives, and an object of another class. For the nonprimitive objects, you put references inside your new class, but you define the primitives directly:

//: c06:SprinklerSystem.java
// Composition for code reuse.
import com.bruceeckel.simpletest.*;

class WaterSource {
  private String s;
  WaterSource() {
    System.out.println("WaterSource()");
    s = new String("Constructed");
  }
  public String toString() { return s; }
}

public class SprinklerSystem {
  private static Test monitor = new Test();
  private String valve1, valve2, valve3, valve4;
  private WaterSource source;
  private int i;
  private float f;
  public String toString() {
    return
      "valve1 = " + valve1 + "
" +
      "valve2 = " + valve2 + "
" +
      "valve3 = " + valve3 + "
" +
      "valve4 = " + valve4 + "
" +
      "i = " + i + "
" +
      "f = " + f + "
" +
      "source = " + source;
  }
  public static void main(String[] args) {
    SprinklerSystem sprinklers = new SprinklerSystem();
    System.out.println(sprinklers);
    monitor.expect(new String[] {
      "valve1 = null",
      "valve2 = null",
      "valve3 = null",
      "valve4 = null",
      "i = 0",
      "f = 0.0",
      "source = null"
    });
  }
} ///:~


One of the methods defined in both classes is special: toString( ). You will learn later that every nonprimitive object has a toString( ) method, and it’s called in special situations when the compiler wants a String but it has an object. So in the expression in SprinklerSystem.toString( ):

"source = " + source;


the compiler sees you trying to add a String object ("source = ") to a WaterSource. Because you can only “add” a String to another String, it says “I’ll turn source into a String by calling toString( )!” After doing this it can combine the two Strings and pass the resulting String to System.out.println( ). Any time you want to allow this behavior with a class you create, you need only write a toString( ) method. Feedback

Primitives that are fields in a class are automatically initialized to zero, as noted in Chapter 2. But the object references are initialized to null, and if you try to call methods for any of them, you’ll get an exception. It’s actually good (and useful) that you can still print them out without throwing an exception. Feedback

It makes sense that the compiler doesn’t just create a default object for every reference, because that would incur unnecessary overhead in many cases. If you want the references initialized, you can do it: Feedback

  1. At the point the objects are defined. This means that they’ll always be initialized before the constructor is called. Feedback
  2. In the constructor for that class. Feedback
  3. Right before you actually need to use the object. This is often called lazy initialization. It can reduce overhead in situations where object creation is expensive and the object doesn’t need to be created every time. Feedback

All three approaches are shown here: Feedback

//: c06:Bath.java
// Constructor initialization with composition.
import com.bruceeckel.simpletest.*;

class Soap {
  private String s;
  Soap() {
    System.out.println("Soap()");
    s = new String("Constructed");
  }
  public String toString() { return s; }
}

public class Bath {
  private static Test monitor = new Test();
  private String // Initializing at point of definition:
    s1 = new String("Happy"),
    s2 = "Happy",
    s3, s4;
  private Soap castille;
  private int i;
  private float toy;
  public Bath() {
    System.out.println("Inside Bath()");
    s3 = new String("Joy");
    i = 47;
    toy = 3.14f;
    castille = new Soap();
  }
  public String toString() {
    if(s4 == null) // Delayed initialization:
      s4 = new String("Joy");
    return
      "s1 = " + s1 + "
" +
      "s2 = " + s2 + "
" +
      "s3 = " + s3 + "
" +
      "s4 = " + s4 + "
" +
      "i = " + i + "
" +
      "toy = " + toy + "
" +
      "castille = " + castille;
  }
  public static void main(String[] args) {
    Bath b = new Bath();
    System.out.println(b);
    monitor.expect(new String[] {
      "Inside Bath()",
      "Soap()",
      "s1 = Happy",
      "s2 = Happy",
      "s3 = Joy",
      "s4 = Joy",
      "i = 47",
      "toy = 3.14",
      "castille = Constructed"
    });
  }
} ///:~




[ Return to Thinking in Java 2, 3rd edition ]


Top 10 read Java Articles
 Get free "1000 Java Tips eBook"

 Java Calendar and Date: good to know facts and code examples

 Array vs ArrayList vs LinkedList vs Vector: an excellent overview and examples

 How can I convert any Java Object into byte array? And byte array to file object

 The Java Lesson 1: What is Java?

 How do I compare two dates and times, date between dates, time between times and

 Maven vs Ant or Ant vs Maven?

 How to open, read, write, close file(s) in Java? Examples on move, rename and de

 Java Array

 Java: JLabel font and color


[ More in News Section ]
Java Lessons

The Java Lesson 1:
What is Java?
The Java Lesson 2:
Anatomy of a simple Java program
The Java Lesson 3:
Identifiers and primitive data types
The Java Lesson 4:
Variables, constants, and literals
The Java Lesson 5:
Arithmetic operations, conversions, and casts
The Java Lesson 6:
Boolean expressions and operations
The Java Lesson 7:
Bitwise operations
The Java Lesson 8:
Flow control with if and else
The Java Lesson 9:
switch statements
The Java Lesson 10:
for, while, and do-while statements
The Java Lesson 11:
Using break and continue
The Java Lesson 12:
Class methods and how they are called
The Java Lesson 13:
Using the Math class
The Java Lesson 14:
Creating and calling custom class methods
The Java Lesson 15:
Overloading class methods
The Java Lesson 16:
An introduction to objects and object references
The Java Lesson 17:
The String class
The Java Lesson 18:
The StringBuffer class
The Java Lesson 19:
Initializing and processing arrays of primitives
The Java Lesson 20:
Initializing and processing arrays of objects
The Java Lesson 23:
Inheritance and overriding inherited methods
The Java Lesson 24:
abstract classes and polymorphism
The Java Lesson 25:
Interfaces, instanceof, and object conversion and casting
The Java Lesson 26:
Introduction to graphical programming and the java.awt packa
The Java Lesson 27:
The Component class
The Java Lesson 28:
Containers and simple layout managers
The Java Lesson 29:
The Color and Font classes
The Java Lesson 30:
Drawing geometric shapes
The Java Lesson 31:
Choice, List, and Checkbox controls
The Java Lesson 32:
Using the Scrollbar graphical control
The Java Lesson 33:
Menus and submenus
The Java Lesson 34:
An introduction to applets and the Applet class
The Java Lesson 35:
Essential HTML to launch an applet and pass it parameters
The Java Lesson 36:
Mouse event processing
Java Lesson 37:
Menus and submenus
Java Lesson 38:
The WindowListener interface and the WindowAdapter class
Java Lesson 39:
An introduction to GridBagLayout
Java Lesson 40:
An introduction to the Java Collections API
Java Lesson 41:
Exception handling with try, catch, and finally blocks
Java Lesson 42:
Claiming and throwing exceptions
Java Lesson 43:
Multithreading, the Thread class, and the Runnable interface
Java Lesson 44:
An introduction to I/O and the File and FileDialog classes
Java Lesson 45:
Low-level and high-level stream classes
Java Lesson 46:
Using the RandomAccessFile class
Java Lessons by
Joh Huhtala: Update

Latest articles
 Java Profiler JProbe to Resolve Performance Problems Faster

 SSL with GlassFish v2, page 5

 SSL with GlassFish v2, page 4

 SSL with GlassFish v2, page 3

 SSL with GlassFish v2, page 2

 The Java Lesson 2: Anatomy of a simple Java program, page 2

 New site about Java for robots and robotics: both software and hardware.

 Exceptions -III: What's an exception and why do I care?

 Exceptions -II: What's an exception and why do I care?

 Exceptions: What's an exception and why do I care?

 Double your Java code quality in 10 minutes, here is receipt

 Murach's Java Servlets and JSP

 How to get ascii code from a char in Java?

 Can we just try without catch? Yes!

 Make Tomcat page load faster

 Make your Tomcat More secure - limit network address for certain IP addresses

 New Java book online starts now here...

 Implementing RESTful Web Services in Java

 Firefox trimming from 1 GB to 40 Mb with many tabs opened

 SSL with GlassFish v2

 My request to replublish Tech Tips

 Search JavaFAQ.nu site here

 New Advanced Installer for Java 6.0 brings XML updates and imports 3rd party MSI

 EJB programming restrictions

 Maven vs Ant or Ant vs Maven?

 Why Java does not use default value which it should?

 How to unsign signed bytes in Java - your guide is here

 The Java Lesson 3: Identifiers and primitive data types. Page 2

 The Java Lesson 7: Bitwise operations with good examples, click here! Page 4

 The Java Lesson 7: Bitwise operations with good examples, click here! Page 3


[ More in News Section ]


Home Code Examples Java Forum All Java Tips Books Submit News, Code... Search... Offshore Software Tech Doodling

RSS feed Java FAQ RSS feed Java FAQ News     

    RSS feed Java Forums RSS feed Java Forums

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest 1999-2006 by Java FAQs Daily Tips.

Interactive software released under GNU GPL, Code Credits, Privacy Policy