Easy to Learn Java: Programming Articles, Examples and Tips

Start with Java in a few days with Java Lessons or Lectures


Code Examples

Java Tools

More Java Tools!

Java Forum

All Java Tips


Submit News
Search the site here...

13: Concurrency

Custom Search
13: Concurrency

[ Return to Thinking in Java 2, 3rd edition ]

Page: 1/19 

Next Page (2/19) Next Page
MindView Inc.

Thinking in Java, 3rd ed. Revision 4.0

[ Viewing Hints ] [ Book Home Page ] [ Free Newsletter ]
[ Seminars ] [ Seminars on CD ROM ] [ Consulting ]

13: Concurrency

Objects provide a way to divide a program into independent sections. Often, you also need to turn a program into separate, independently running subtasks.

Each of these independent subtasks is called a thread, and you program as if each thread runs by itself and has the CPU to itself. Some underlying mechanism is actually dividing up the CPU time for you, but in general, you don’t have to think about it, which makes programming with multiple threads a much easier task. Feedback

A process is a self-contained running program with its own address space. A multitasking operating system is capable of running more than one process (program) at a time, while making it look like each one is chugging along on its own, by periodically switching the CPU from one task to another. A thread is a single sequential flow of control within a process. A single process can thus have multiple concurrently executing threads. Feedback

There are many possible uses for multithreading, but in general, you’ll have some part of your program tied to a particular event or resource, and you don’t want that to hold up the rest of your program. So, you create a thread associated with that event or resource and let it run independently of the main program. Feedback

Concurrent programming is like stepping into an entirely new world and learning a new programming language, or at least a new set of language concepts. With the appearance of thread support in most microcomputer operating systems, extensions for threads have also been appearing in programming languages or libraries. In all cases, thread programming:

  1. Seems mysterious and requires a shift in the way you think about programming
  2. Looks similar to thread support in other languages, so when you understand threads, you understand a common tongue

And although support for threads can make Java a more complicated language, this isn’t entirely the fault of Java—threads are tricky. Feedback

Understanding concurrent programming is on the same order of difficulty as understanding polymorphism. If you apply some effort, you can fathom the basic mechanism, but it generally takes deep study and understanding in order to develop a true grasp of the subject. The goal of this chapter is to give you a solid foundation in the basics of concurrency so that you can understand the concepts and write reasonable multithreaded programs. Be aware that you can easily become overconfident, so if you are writing anything complex, you will need to study dedicated books on the topic. Feedback


One of the most compelling reasons for concurrency is to produce a responsive user interface. Consider a program that performs some CPU-intensive operation and thus ends up ignoring user input and being unresponsive. The basic problem is that the program needs to continue performing its operations, and at the same time it needs to return control to the user interface so that the program can respond to the user. If you have a “quit” button, you don’t want to be forced to poll it in every piece of code you write in your program, and yet you want the quit button to be responsive, as if you were checking it regularly. Feedback

A conventional method cannot continue performing its operations and at the same time return control to the rest of the program. In fact, this sounds like an impossible thing to accomplish, as if the CPU must be in two places at once, but this is precisely the illusion that concurrency provides. Feedback

Concurrency can also be used to optimize throughput. For example, you might be able to do important work while you’re stuck waiting for input to arrive on an I/O port. Without threading, the only reasonable solution is to poll the I/O port, which is awkward and can be difficult. Feedback

If you have a multiprocessor machine, multiple threads may be distributed across multiple processors, which can dramatically improve throughput. This is often the case with powerful multiprocessor web servers, which can distribute large numbers of user requests across CPUs in a program that allocates one thread per request. Feedback

One thing to keep in mind is that a program with many threads must be able to run on a single-CPU machine. Therefore, it must also be possible to write the same program without using any threads. However, multithreading provides a very important organizational benefit, so that the design of your program can be greatly simplified. Some types of problems, such as simulation—a video game, for example—are very difficult to solve without support for concurrency. Feedback

The threading model is a programming convenience to simplify juggling several operations at the same time within a single program. With threads, the CPU will pop around and give each thread some of its time. Each thread has the consciousness of constantly having the CPU to itself, but the CPU’s time is actually sliced between all the threads. The exception to this is if your program is running on multiple CPUs, but one of the great things about threading is that you are abstracted away from this layer, so your code does not need to know whether it is actually running on a single CPU or many. Thus, threads are a way to create transparently scalable programs—if a program is running too slowly, it can easily be made faster by adding CPUs to your computer. Multitasking and multithreading tend to be the most reasonable ways to utilize multiprocessor systems. Feedback

Threading can reduce computing efficiency somewhat in single-CPU machines, but the net improvement in program design, resource balancing, and user convenience is often quite valuable. In general, threads enable you to create a more loosely-coupled design; otherwise, parts of your code would be forced to pay explicit attention to tasks that would normally be handled by threads. Feedback

[ Return to Thinking in Java 2, 3rd edition ]

Top 10 read Java Articles
 Get free "1000 Java Tips eBook"

 Java Calendar and Date: good to know facts and code examples

 Array vs ArrayList vs LinkedList vs Vector: an excellent overview and examples

 How can I convert any Java Object into byte array? And byte array to file object

 The Java Lesson 1: What is Java?

 How do I compare two dates and times, date between dates, time between times and

 Maven vs Ant or Ant vs Maven?

 How to open, read, write, close file(s) in Java? Examples on move, rename and de

 Java Array

 Java: JLabel font and color

[ More in News Section ]
Java Lessons

The Java Lesson 1:
What is Java?
The Java Lesson 2:
Anatomy of a simple Java program
The Java Lesson 3:
Identifiers and primitive data types
The Java Lesson 4:
Variables, constants, and literals
The Java Lesson 5:
Arithmetic operations, conversions, and casts
The Java Lesson 6:
Boolean expressions and operations
The Java Lesson 7:
Bitwise operations
The Java Lesson 8:
Flow control with if and else
The Java Lesson 9:
switch statements
The Java Lesson 10:
for, while, and do-while statements
The Java Lesson 11:
Using break and continue
The Java Lesson 12:
Class methods and how they are called
The Java Lesson 13:
Using the Math class
The Java Lesson 14:
Creating and calling custom class methods
The Java Lesson 15:
Overloading class methods
The Java Lesson 16:
An introduction to objects and object references
The Java Lesson 17:
The String class
The Java Lesson 18:
The StringBuffer class
The Java Lesson 19:
Initializing and processing arrays of primitives
The Java Lesson 20:
Initializing and processing arrays of objects
The Java Lesson 23:
Inheritance and overriding inherited methods
The Java Lesson 24:
abstract classes and polymorphism
The Java Lesson 25:
Interfaces, instanceof, and object conversion and casting
The Java Lesson 26:
Introduction to graphical programming and the java.awt packa
The Java Lesson 27:
The Component class
The Java Lesson 28:
Containers and simple layout managers
The Java Lesson 29:
The Color and Font classes
The Java Lesson 30:
Drawing geometric shapes
The Java Lesson 31:
Choice, List, and Checkbox controls
The Java Lesson 32:
Using the Scrollbar graphical control
The Java Lesson 33:
Menus and submenus
The Java Lesson 34:
An introduction to applets and the Applet class
The Java Lesson 35:
Essential HTML to launch an applet and pass it parameters
The Java Lesson 36:
Mouse event processing
Java Lesson 37:
Menus and submenus
Java Lesson 38:
The WindowListener interface and the WindowAdapter class
Java Lesson 39:
An introduction to GridBagLayout
Java Lesson 40:
An introduction to the Java Collections API
Java Lesson 41:
Exception handling with try, catch, and finally blocks
Java Lesson 42:
Claiming and throwing exceptions
Java Lesson 43:
Multithreading, the Thread class, and the Runnable interface
Java Lesson 44:
An introduction to I/O and the File and FileDialog classes
Java Lesson 45:
Low-level and high-level stream classes
Java Lesson 46:
Using the RandomAccessFile class
Java Lessons by
Joh Huhtala: Update

Latest articles
 Java Profiler JProbe to Resolve Performance Problems Faster

 SSL with GlassFish v2, page 5

 SSL with GlassFish v2, page 4

 SSL with GlassFish v2, page 3

 SSL with GlassFish v2, page 2

 The Java Lesson 2: Anatomy of a simple Java program, page 2

 New site about Java for robots and robotics: both software and hardware.

 Exceptions -III: What's an exception and why do I care?

 Exceptions -II: What's an exception and why do I care?

 Exceptions: What's an exception and why do I care?

 Double your Java code quality in 10 minutes, here is receipt

 Murach's Java Servlets and JSP

 How to get ascii code from a char in Java?

 Can we just try without catch? Yes!

 Make Tomcat page load faster

 Make your Tomcat More secure - limit network address for certain IP addresses

 New Java book online starts now here...

 Implementing RESTful Web Services in Java

 Firefox trimming from 1 GB to 40 Mb with many tabs opened

 SSL with GlassFish v2

 My request to replublish Tech Tips

 Search JavaFAQ.nu site here

 New Advanced Installer for Java 6.0 brings XML updates and imports 3rd party MSI

 EJB programming restrictions

 Maven vs Ant or Ant vs Maven?

 Why Java does not use default value which it should?

 How to unsign signed bytes in Java - your guide is here

 The Java Lesson 3: Identifiers and primitive data types. Page 2

 The Java Lesson 7: Bitwise operations with good examples, click here! Page 4

 The Java Lesson 7: Bitwise operations with good examples, click here! Page 3

[ More in News Section ]

Home Code Examples Java Forum All Java Tips Books Submit News, Code... Search... Offshore Software Tech Doodling

RSS feed Java FAQ RSS feed Java FAQ News     

    RSS feed Java Forums RSS feed Java Forums

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest 1999-2006 by Java FAQs Daily Tips.

Interactive software released under GNU GPL, Code Credits, Privacy Policy