Easy to Learn Java: Programming Articles, Examples and Tips

Start with Java in a few days with Java Lessons or Lectures


Code Examples

Java Tools

More Java Tools!

Java Forum

All Java Tips


Submit News
Search the site here...

Chapter 2. (Introduction) Swing Mechanics. Easy for reading, Click here!

Custom Search
Chapter 2. (Introduction) Swing Mechanics. Easy for reading, Click here!

[ Return to Swing (Book) ]

Page: 2/14 

Previous Page Previous Page (1/14) - Next Page (3/14) Next Page
Subpages: 1. JComponent properties, size, and positioning 
2.  Event handling and dispatching 
3. Multithreading
4. Timers
5. AppContext service
6. Inside Timers & the TimerQueue
7. JavaBeans architecture
8. Fonts, Colors, Graphics and text
9. Using the Graphics clipping area
10. Graphics debugging
11. Painting and validation
12. Focus Management
13. Keyboard input, KeyStrokes, and Actions
14. SwingUtilities

2.2    Event handling and dispatching

Events occur anytime a key or mouse button is pressed. The way components receive and process events has not changed from JDK1.1. There are many different types of events that Swing components can generate, including those in java.awt.event and even more in javax.swing.event. Many of the new Swing event types are component-specific. Each event type is represented by an object that, at the very least, identifies the source of the event, and often carries additional information about what specific kind of event it is, and information about the state of the source before and after the event was generated. Sources of events are most commonly components or models, but there are also different kinds of objects that can generate events.

As we discussed in the last chapter, in order to receive notification of events, we need to register listeners with the target object. A listener is an implementation of any of the XXListener classes (where XX is an event type) defined in the java.awt.event, java.beans, and  javax.swing.event packages. There is always at least one method defined in each interface that takes a corresponding XXEvent as parameter. Classes that support notification of XXEvents generally implement the XXListener interface, and have support for registering and unregistering those listeners through the use of addXXListener() and removeXXListener() methods respectively. Most event targets allow any number of listeners to be registered with them. Similarly, any listener instance can be registered to receive events from any number of event sources. Usually classes that support XXEvents provide protected fireXX() methods used for constructing event objects and sending them to the event handlers for processing.

2.2.1    class javax.swing.event.EventListenerList

EventListenerList is an array of XXEvent/XXListener pairs. JComponent and each of its decendants use an EventListenerList to maintain their listeners. All default models also maintain listeners and an EventListenerList. When a listener is added to a Swing component or model, the associated event's Class instance (used to identify event type) is added to its EventListenerList array, followed by the listener itself. Since these pairs are stored in an array rather than a mutable collection (for efficiency purposes), a new array is created on each addition or removal using the System.arrayCopy() method. When events are received, the list is walked through and events are sent to each listener with a matching type. Because the array is ordered in an XXEvent, XXListener, YYEvent, YYListener, etc. fashion, a listener corresponding to a given event type is always next in the array. This approach allows very efficient event-dispatching routines (see section 2.7.7). For thread safety the methods for adding and removing listeners from an EventListenerList synchronize access to the array when it is manipulated.

JComponent defines its EventListenerList as a protected field called listenerList so that all subclasses inherit it. Swing components manage most of their listeners directly through listenerList.

2.2.2    Event-dispatching thread

All events are processed by the listeners that receive them within the event-dispatching thread (an instance of java.awt.EventDispatchThread). All painting and component layout is expected to occur within this thread as well. The event-dispatching thread is of primary importance to Swing and AWT, and plays a key role in keeping updates to component state and display in an app under control.

Associated with this thread is a FIFO queue of events -- the system event queue (an instance of java.awt.EventQueue). This gets filled up, as any FIFO queue, in a serial fashion. Each request takes its turn executing event handling code, whether this be updating component properties, layout, or repainting. All events are processed serially to avoid such situations as a component's state being modified in the middle of a repaint. Knowing this, we must be careful not to dispatch events outside of the event-dispatching thread. For instance, calling a fireXX() method directly from a separate thread of execution is unsafe. We must also be sure that event handling code, and painting code can be executed quickly. Otherwise the whole system event queue will be blocked waiting for one event process, repaint, or layout to occur, and our application will appear frozen or locked up.

[ Return to Swing (Book) ]

Top 10 read Java Articles
 Get free "1000 Java Tips eBook"

 Java Calendar and Date: good to know facts and code examples

 Array vs ArrayList vs LinkedList vs Vector: an excellent overview and examples

 How can I convert any Java Object into byte array? And byte array to file object

 The Java Lesson 1: What is Java?

 How do I compare two dates and times, date between dates, time between times and

 Maven vs Ant or Ant vs Maven?

 How to open, read, write, close file(s) in Java? Examples on move, rename and de

 Java Array

 Java: JLabel font and color

[ More in News Section ]
Java Lessons

The Java Lesson 1:
What is Java?
The Java Lesson 2:
Anatomy of a simple Java program
The Java Lesson 3:
Identifiers and primitive data types
The Java Lesson 4:
Variables, constants, and literals
The Java Lesson 5:
Arithmetic operations, conversions, and casts
The Java Lesson 6:
Boolean expressions and operations
The Java Lesson 7:
Bitwise operations
The Java Lesson 8:
Flow control with if and else
The Java Lesson 9:
switch statements
The Java Lesson 10:
for, while, and do-while statements
The Java Lesson 11:
Using break and continue
The Java Lesson 12:
Class methods and how they are called
The Java Lesson 13:
Using the Math class
The Java Lesson 14:
Creating and calling custom class methods
The Java Lesson 15:
Overloading class methods
The Java Lesson 16:
An introduction to objects and object references
The Java Lesson 17:
The String class
The Java Lesson 18:
The StringBuffer class
The Java Lesson 19:
Initializing and processing arrays of primitives
The Java Lesson 20:
Initializing and processing arrays of objects
The Java Lesson 23:
Inheritance and overriding inherited methods
The Java Lesson 24:
abstract classes and polymorphism
The Java Lesson 25:
Interfaces, instanceof, and object conversion and casting
The Java Lesson 26:
Introduction to graphical programming and the java.awt packa
The Java Lesson 27:
The Component class
The Java Lesson 28:
Containers and simple layout managers
The Java Lesson 29:
The Color and Font classes
The Java Lesson 30:
Drawing geometric shapes
The Java Lesson 31:
Choice, List, and Checkbox controls
The Java Lesson 32:
Using the Scrollbar graphical control
The Java Lesson 33:
Menus and submenus
The Java Lesson 34:
An introduction to applets and the Applet class
The Java Lesson 35:
Essential HTML to launch an applet and pass it parameters
The Java Lesson 36:
Mouse event processing
Java Lesson 37:
Menus and submenus
Java Lesson 38:
The WindowListener interface and the WindowAdapter class
Java Lesson 39:
An introduction to GridBagLayout
Java Lesson 40:
An introduction to the Java Collections API
Java Lesson 41:
Exception handling with try, catch, and finally blocks
Java Lesson 42:
Claiming and throwing exceptions
Java Lesson 43:
Multithreading, the Thread class, and the Runnable interface
Java Lesson 44:
An introduction to I/O and the File and FileDialog classes
Java Lesson 45:
Low-level and high-level stream classes
Java Lesson 46:
Using the RandomAccessFile class
Java Lessons by
Joh Huhtala: Update

Latest articles
 Java Profiler JProbe to Resolve Performance Problems Faster

 SSL with GlassFish v2, page 5

 SSL with GlassFish v2, page 4

 SSL with GlassFish v2, page 3

 SSL with GlassFish v2, page 2

 The Java Lesson 2: Anatomy of a simple Java program, page 2

 New site about Java for robots and robotics: both software and hardware.

 Exceptions -III: What's an exception and why do I care?

 Exceptions -II: What's an exception and why do I care?

 Exceptions: What's an exception and why do I care?

 Double your Java code quality in 10 minutes, here is receipt

 Murach's Java Servlets and JSP

 How to get ascii code from a char in Java?

 Can we just try without catch? Yes!

 Make Tomcat page load faster

 Make your Tomcat More secure - limit network address for certain IP addresses

 New Java book online starts now here...

 Implementing RESTful Web Services in Java

 Firefox trimming from 1 GB to 40 Mb with many tabs opened

 SSL with GlassFish v2

 My request to replublish Tech Tips

 Search JavaFAQ.nu site here

 New Advanced Installer for Java 6.0 brings XML updates and imports 3rd party MSI

 EJB programming restrictions

 Maven vs Ant or Ant vs Maven?

 Why Java does not use default value which it should?

 How to unsign signed bytes in Java - your guide is here

 The Java Lesson 3: Identifiers and primitive data types. Page 2

 The Java Lesson 7: Bitwise operations with good examples, click here! Page 4

 The Java Lesson 7: Bitwise operations with good examples, click here! Page 3

[ More in News Section ]

Home Code Examples Java Forum All Java Tips Books Submit News, Code... Search... Offshore Software Tech Doodling

RSS feed Java FAQ RSS feed Java FAQ News     

    RSS feed Java Forums RSS feed Java Forums

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest 1999-2006 by Java FAQs Daily Tips.

Interactive software released under GNU GPL, Code Credits, Privacy Policy